Разъяснения к используемым в каталоге символам (Icons)

Радиус изгиба

Температура

v макс. без поддержки/ при скольжении

а макс.

Перемещение

Скручивание

Устойчив к УФ-излучению

Номинальное напряжение

Испытательное напряжение

Масло

Offshore

Трудновоспламеняющийся

Не содержит силикон

Без галогена

Не содержит свинец

Внешняя оболочка

Внешняя оболочка

Внутренняя оболочка

Скручивание жип

Идентификация жил

Проводник

Волоконно-оптический кабель

Изоляция жил

Общий экран

Центральный элемент

Наполнение

Экран группы жип

Оболочка группы жил

Материал

Размеры

Рабочее давление

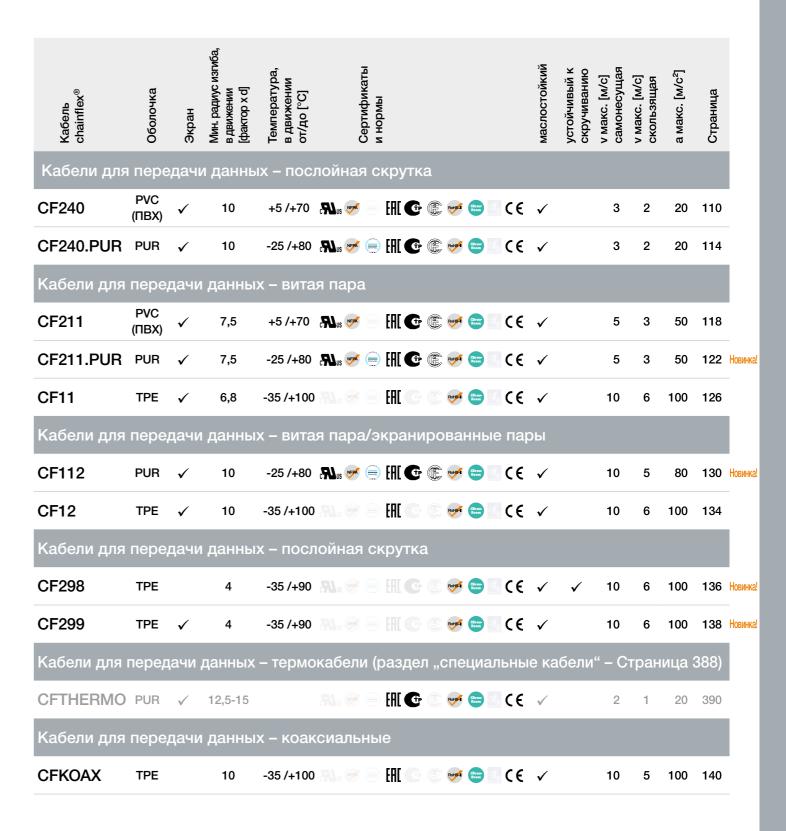
Вакуум

UL/CSA

DESINA

Чистые помещения

NFPA


Токсичность

Низкая плотность дыма

лередали данных Коаксиальные кабели

Гарантия chainflex® - 36 месяцев

Гарантированный срок службы, обеспечивающий надежность ►Таблица подбора страница 108

Гарантия chainflex®

Гарантированный срок эксплуатации "

гарантия	i chainne	X						Lapa	антир	OBah	І <mark>Н</mark> Ы	n cbo	JK 31		уата	ции
	Кабель	Температура,	v макс. [м/с	_		мещение			згиба мин. op x d]		Радиус из [факто			Радиус изі [факто		Страница
	chainflex®	от/до [°С]	самонесущая скол	ьзящая	M/C ²]	[M]		< 10 м	≥10 м		< 10 м	≥10 м		< 10 м	≥ 10 м	
Кабели для передач	и данных – послойн	ая скрутка							(10 миллионов)	7,5 ו		(15 миллионов)		10 миллионов (2		
		+5 / +15	_	_	_	_		двоинь 12,5	ie ходы * 15	_	Двойны 13,5	г ходы 16		Двойные 14,5	: ходы 17	
MAX STATE OF THE S	CF240	+15 / +60	3	2	20 :	≤ 50		10	12,5		11	13,5		14,5	14,5	110
	0. 2.0	+60 / +70						12,5	15		13,5	16		14,5	17	
		-25 / -15						12,5	15		13,5	16		14,5	17	
With the same of t	CF240.PUR	-15 / +70	3	2	20 :	≤ 50		10	12,5		11	13,5		12	14,5	114
		+70 / +80						12,5	15		13,5	16		14,5	17	
Кабели для передач	и данных – витая па	пра														
		+5 / +15						-	10		1	1		12		
	CF211	+15 / +60	5	3	50 ≤	≤ 100		7	,5		8,	5		9,9	5	118
		+60 / +70						1	10		1	1		12	2	
		-25 / -15							10		1			12		
	CF211.PUR Новин		5	3	50 ≤	≤ 100			7,5		8,			9,5		122
		+70 / +80							10		1			12		
	CF11	-35 / -25 -25 / +90	10	6	100 ≤	≤ 400			7,5 6,8		8, 7,			9,8 8,8		126
Marie Control	CFTT	+90 / +100	10	· ·	100 5	<u> 400</u>			,,o ',5		7 , 8,			9,		120
Кабели для передач	и данных – витая па		ванные парь						,							
		-20 / -15		_	_			1:	2,5	_	13	.5		14,	5	
	CF112 Новинка!	-15 / +70	10	5	80 ≤	≤ 100			10		1			12		130
_		+70 / +80							2,5		13			14,		
		-35 / -25						1:	2,5		13	,5		14,	5	
Commence of the second	CF12	-25 / +90	10	6	100 ≤	≤ 400		1	10		1	1		12	2	134
		+90 / +100						1:	2,5		13	,5		14,	5	
Кабели для передач	и данных – послойн	ая скрутка														
		-35 / -25							5		e			7		
	CF298 Новинка!	-25 / +80	10	6	100 ≤	≤ 100			4		5	i		6		136
		+80 / +90							5		6	i		7		
		-35 / -25							5		6			7		
	CF299 Новинка!	-25 / +80	10	6	100 ≤	≤ 100			4					6		138
	_	+80 / +90	_	-	_	_	_	_	5	_	(_	7	_	
Кабели для передач	и данных – коаксиа	льные														
		-35 / -25							2,5		13			14,		
	CFKoax1/3	-25 / +90	10	5	100 ≤	≤ 400			10		1			12		140
		+90 / +100							2,5		13			14,		
_	CEKooyo	-35 / -25	10	5	100	- 400			2,5		13			14,		140
	CFKoax2	-25 / +60 +60 / +70	10	5	100 ≤	≤ 400			10 2,5		1 13			12		140
		+00/+/0						- 1	2,0		13	,0		14,	J	

^п Эксклюзивно! Гарантированный срок эксплуатации для данной серии ▶Страница 22-23

108

^{*} Гарантированный срок эксплуатации, возможно и большее число двойных ходов. Цифры в скобках относятся к кабелям chainflex® CF298/CF299

Кабели передачи данных | PVC (ПВХ) | chainflex® CF240

- Для использования при средних нагрузках
- Внешняя изоляция РVС
- Экранированный
- Маслостойкий
- Огнестойкий

Механические свойства

Ради

иус изгиба

мин. 10 x d э-цепь мин. 8 x d

неподвижный мин. 5 x d

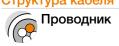
температура +5 °C до +70 °C э-цепь

подвижный

-5 °C до +70 °C (в соответствии с DIN EN 60811-504) неподвижный -15 °C до +70 °C (в соответствии с DIN EN 50305)

свободнонесущий 3 м/с

скользящий а макс. 20 M/c^2


Перемещение Применения в системах без поддержки и до 50 м для применения со

2 m/c

скольжением, Класс 4

Структура кабеля

v макс.

Специальные многопроволочные жилы из тонких медных проводников.

Изоляция жил Высококачественный состав ТРЕ, устойчивый к механическим воздей-

Отдельные жилы скручены с коротким шагом скрутки. Скручивание жил

Маркировка жил Цветовой код в соответствии с DIN 47100.

Промежуточ-Изоляция из фольги вокруг внешнего слоя. ная оболочка

Общий экран Особо устойчивый к изгибам оплетки, состоящий из луженых медных

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Внешняя оболочка С учётом требований к энергетическим цепям применяется малоадгезивная маслостойкая смесь на основе ПВХ (согласно DIN EN 50363-4-1).

Цвет: Серебристо-серый (в соответствии с RAL 7001)

Электрические характеристики

Номинальное напряжение

300/300 В (в соответствии с DIN BDE 0298-3)

Испытательное напряжение

1500 В (в соответствии с DIN EN 50395)

Свойства и нормативы

Класс 4.4.2.1

Маслостойкость

Маслостойкий (в соответствии с DIN EN 50363-4-1), класс 2.

В соответствии с IEC 60332-1-2, CEI 20-35, FT1, VW-1 Огнестойкость

Не содержит

Не содержит вещества, препятствующие нанесению лаковых покрытий

силикон (согласно PV 3.10.7 - от 1992 г.). Тип 10493 и 2464, 300 V, 80 °C UL/CSA

NFPA NFPA Согласно NFPA 79-2012 раздел 12.9.

EAC Сертифицирован согласно нормам Технического регламента Таможен-

ного союза № TC RU C-DE.ME77.B.01254

Сертифицирован согласно нормам пожарной безопасности № C-DE.

РВ49.В.00416 (Пожарная безопасность)

CEI Согласно СЕІ 20-35.

_{Вонѕ-ш} Не содержит

CE_{CE}

Согласно 2011/65/EU (RoHS-II).

Чистые помещения Соответствует ISO Класс 1. Материал/кабель протестирован IPA, в соот-

ветствии с ISO 14644-1. Согласно 2014/35/EU.

Гарантированный срок службы для данной серии (Страница 22-23)

Двойные ходы		пионов	7,5 мил	ілионов	10 мил	лионов
T	< 10 M	≥ 10 M	< 10 M	≥ 10 M	< 10 M	≥ 10 M
Температура, от/до [°C]	R мин. [фактор x d]					
+5/+15	12,5	15	13,5	16	14,5	17
+15/+60	10	12,5	11	13,5	12	14,5
+60/+70	12,5	15	13,5	16	14,5	17
ROSMOVIIO FORLIJOS	колицество пройцы	V VOTOR - SSTROCHITA I	ALIUDIAU/AUFU/IV KAU	N/IIIIIIII		

Стандартные области применения

- Для использования при средних нагрузках
- Незначительное воздействие масел
- Преимущественно для применения внутри помещений, а также снаружи при температуре > 5 °C
- Для систем без поддержки и до 50 м в скользящем исполнении
- Погрузочно-разгрузочные модули для стеллажей, обрабатывающее и упаковочное оборудование, погрузка и разгрузка, краны для работы в помещениях

igus[®] chainflex[®] CF240

Кабели передачи данных | PVC (ПВХ) | chainflex® CF240

igus[®] chainflex[®] CF24Ø

Рисунок в качестве примера

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KT/KM]	[KГ/KM]
CF240.01.03	(3x0,14)C	5,0	15	28
CF240.01.04	(4x0,14)C	5,0	16	32
CF240.01.05	(5x0,14)C	5,5	18	35
CF240.01.07	(7x0,14)C	6,0	25	45
CF240.01.14	(14x0,14)C	7,5	43	74
CF240.01.18	(18x0,14)C	8,0	54	93
CF240.01.24	(24x0,14)C	9,0	67	128
CF240.02.03	(3x0,25)C	5,0	18	35
CF240.02.04	(4x0,25)C	5,5	21	46
CF240.02.05	(5x0,25)C	5,5	26	43
CF240.02.07	(7x0,25)C	6,5	33	55
CF240.02.08	(8x0,25)C	7,0	37	63
CF240.02.14	(14x0,25)C	8,0	63	93
CF240.02.18	(18x0,25)C	8,5	75	111
CF240.02.24	(24x0,25)C	9,5	100	166
CF240.03.02	(2x0,34)C	5,5	20	38
CF240.03.03	(3x0,34)C	5,5	27	40
CF240.03.04	(4x0,34)C	6,0	31	52
CF240.03.05	(5x0,34)C	6,0	36	57
CF240.03.07	(7x0,34)C	7,5	48	77
CF240.03.10	(10x0,34)C	8,5	63	98
CF240.03.14	(14x0,34)C	9,0	79	116
CF240.03.18	(18x0,34)C	10,0	96	142
CF240.03.24	(24x0,34)C	11,0	127	184

G = с жилой заземления желто-зеленого цвета; **x** = без жилы заземления

Пример заказа: СF240.01.03 - с Вашей желаемой длиной (с шагом 0,5 м) СF240 Серия chainflex® .01 Код номинального сечения .03 Число жил

Кабели передачи данных | PUR | chainflex® CF240.PUR

- Для использования при средних нагрузках
- PUR внешняя оболочка.
- Экранированный
- Устойчивый к маслам и охлаждающим жидкостям
- Устойчивый к надрезам
- Без ПВХ и галогенов
- Огнестойкий
- Устойчивый к гидролизу и микробам

Механические свойства

Радиус изгиба

э-цепь

мин. 10 x d

мин. 8 x d подвижный

неподвижный мин. 5 x d

Температура

э-цепь -25 °C до +80 °C

подвижный

-40 °C до +80 °C (в соответствии с DIN EN 60811-504)

неподвижный -50 °C до +80 °C (в соответствии с DIN EN 50305)

v макс.

свободнонесущий 3 м/с скользящий 2 м/с

а макс.

Перемещение

 20 M/c^2

Применения в системах без поддержки и до 50 м для применения со

скольжением, Класс 4

Структура кабеля

Проводник

Специальные многопроволочные жилы из тонких медных проводников.

Изоляция жил

Высококачественный состав ТРЕ, устойчивый к механическим воздей-

Скручивание жил Отдельные жилы скручены с коротким шагом скрутки.

Цветовой код в соответствии с DIN 47100.

Маркировка жил

Промежуточная оболочка Общий экран Изоляция из фольги вокруг внешнего слоя.

Особо устойчивый к изгибам оплетки, состоящий из луженых медных

проводников.

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Внешняя оболочка С учетом требований к энергетическим цепям применяется малоадгезивная, особо устойчивая к истиранию смесь на основе PUR (согласно DIN

EN 50363-10-2).

Цвет: Серый (в соответствии с RAL 7040)

Электрические характеристики

CF240,PUR

chainflex⁰

300/300 В (в соответствии с DIN BDE 0298-3)

Испытательное

напряжение

Номинальное

напряжение

1500 В (в соответствии с DIN EN 50395)

Устойчивость к УФ-излучениям

Средняя.

Маслостойкость

Маслостойкий (в соответствии с DIN EN 50363-10-2), класс 3.

Offshore MUD-устойчивый согласно NEK 606 - состояние на 2009.

Кручение

В соответствии с IEC 60332-1-2, CEI 20-35, FT1, VW-1 Огнестойкость

Без галогена

Не содержит Не содержит вещества, препятствующие нанесению лаковых покрытий силикон

(согласно PV 3.10.7 - от 1992 г.). Согласно DIN EN 60754.

UL/CSA Тип 10493 и 20233, 300 V, 80 °C

Согласно NFPA 79-2012 раздел 12.9.

EAC

Сертифицирован согласно нормам пожарной безопасности - Сертификат №: 61 936-14 НН

Сертифицирован согласно нормам Технического регламента Таможенного союза № TC RU C-DE.ME77.B.01254

Сертифицирован согласно нормам пожарной безопасности № C-DE.

РВ49.В.00416 (Пожарная безопасность) Согласно CEI 20-35.

_{Вону-11} Не содержит свинец

Согласно 2011/65/EU (RoHS-II).

Чистые помещения Соответствует ISO класса 1. Материал наружной оболочки соответствует CF27.07.05.02.01.D, протестирован IPA в соответствии со стандартом

14644-1.

Согласно 2014/35/EU.

Двойные ходы		пионов	7,5 мил	1ЛИОНОВ	10 мил	лионов
T	< 10 M	≥ 10 M	< 10 M	≥ 10 M	< 10 M	≥ 10 M
Температура, от/до [°C]	R мин. [фактор x d]					
-25/-15	12,5	15	13,5	16	14,5	17
-15/+70	10	12,5	11	13,5	12	14,5
+70/+80	12,5	15	13,5	16	14,5	17
* Возможно большее	количество двойны	х ходов - запросите і	индивидуальную каль	ькуляцию.		

- Для использования при средних нагрузках
- Практически абсолютная маслостойкость
- Для применения внутри помещений и на открытом воздухе при солнечном излучении средней интенсивности
- Для систем без поддержки и до 50 м в скользящем исполнении
- Металлообрабатывающие и металлорежущие станки, погрузочно-разгрузочные модули для стеллажей, индустрия упаковочных материалов, быстродействующая погрузка и разгрузка, в диапозоне заявленных отрицательных температур

Кабели передачи данных | PUR | chainflex® CF240.PUR

igus[®] chainflex[®] CF24Ø.PUR

Рисунок в качестве примера

_				_
Артикул	Число жил и номиналь-	Внешний диаметр	Индекс	Bec
	ное сечение проводника	(d) макс.	меди	
	[MM ²]	[MM]	[KT/KM]	[KT/KM]
CF240.PUR.01.04	(4x0,14)C	6,0	16	40
CF240.PUR.01.07	(7x0,14)C	6,5	24	55
CF240.PUR.01.14	(14x0,14)C	8,0	42	81
CF240.PUR.01.18	(18x0,14)C	8,5	54	97
CF240.PUR.02.03	(3x0,25)C	6,0	18	42
CF240.PUR.02.04	(4x0,25)C	6,0	22	46
CF240.PUR.02.05	(5x0,25)C	6,0	26	52
CF240.PUR.02.07	(7x0,25)C	7,0	33	66
CF240.PUR.02.08	(8x0,25)C	7,5	37	73
CF240.PUR.02.14	(14x0,25)C	8,5	63	106
CF240.PUR.02.18	(18x0,25)C	9,0	75	126
CF240.PUR.03.03	(3x0,34)C	6,0	27	49
CF240.PUR.03.04	(4x0,34)C	6,5	31	55
CF240.PUR.03.05	(5x0,34)C	7,0	36	62
CF240.PUR.03.07	(7x0,34)C	8,0	48	87
CF240.PUR.03.14	(14x0,34)C	9,5	79	131
CF240.PUR.03.18	(18x0,34)C	10,5	97	161

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены.

G = c жилой заземления желто-зеленого цвета; x = 6e3 жилы заземления

Пример заказа: CF240.PUR.01.04 - с Вашей желаемой длиной (с шагом 0,5 м) CF240.PUR Серия chainflex® Код номинального сечения Число жил

CF211 VC (ΠΒΧ) $7,5 \times d$

Кабели передачи данных | PVC (ПВХ) | chainflex® CF211

- Для максимальных нагрузок
- Внешняя изоляция РVС
- Экранированный
- Витая пара
- Маслостойкий
- Огнестойкий

Механические свойства

Температура

R	Раді

иус изгиба э-цепь

мин. 7,5 x d мин. 6 x d подвижный

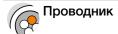
неподвижный мин. 4 x d

+5 °C до +70 °C

э-цепь -5 °C до +70 °C (в соответствии с DIN EN 60811-504) подвижный

неподвижный -15 °C до +70 °C (в соответствии с DIN EN 50305)

свободнонесущий 5 м/с


у макс. скользящий а макс. 50 M/c^2

Перемещение

Применения в системах без поддержки и до 100 м для применения со

скольжением, Класс 5

Структура кабеля

Специальные многопроволочные жилы из тонких медных проводников.

Изоляция жил

Скручивание жил

Высококачественный состав ТРЕ, устойчивый к механическим воздей-

Жилы скручены попарно с коротким шагом скрутки, парные жилы затем тоже скручены с коротким шагом скрутки.

3 м/с

Маркировка жил Цветовой код в соответствии с DIN 47100.

Промежуточ-Изоляция из фольги вокруг внешнего слоя. ная оболочка

общий экран Особо устойчивый к изгибам оплетки, состоящий из луженых медных

проводников.

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Внешняя оболочка С учётом требований к энергетическим цепям применяется малоадгезивная маслостойкая смесь на основе ПВХ (согласно DIN EN 50363-4-1).

Цвет: Серебристо-серый (в соответствии с RAL 7001)

Электрические характеристики

Номинальное напряжение

300/300 В (в соответствии с DIN BDE 0298-3)

chainflex® CF211

igus®

Испытательное

напряжение

1500 В (в соответствии с DIN EN 50395)

Класс 5.5.2.1

Свойства и нормативы

UL/CSA

Маслостойкий (в соответствии с DIN EN 50363-4-1), класс 2. Маслостойкость

В соответствии с IEC 60332-1-2, CEI 20-35, FT1, VW-1 Огнестойкость

Не содержит силикон

Не содержит вещества, препятствующие нанесению лаковых покрытий

(согласно PV 3.10.7 - от 1992 г.). Тип 10493 и 2464, 300 V, 80 °C

NFPA NFPA Согласно NFPA 79-2012 раздел 12.9.

EAC Сертифицирован согласно нормам Технического регламента Таможен-

ного союза № TC RU C-DE.ME77.B.01254

Сертифицирован согласно нормам пожарной безопасности № C-DE.

РВ49.В.00416 (Пожарная безопасность)

CEI

_{вону} Не содержит

Согласно 2011/65/EU (RoHS-II).

Согласно СЕІ 20-35.

Согласно 2014/35/EU.

Чистые помещения Соответствует ISO Класс 1. Материал наружной оболочки соответствует

CF240.02.24, протестирован IPA в соответствии со стандартом 14644-1.

CE_{CE}

Гарантированный срок службы для данной серии (Страница 22-23)

Двойные ходы*	5 миллионов	7,5 миллионов	10 миллионов
Температура, от/до [°C]	R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
+5/+15	10	11	12
+15/+60	7,5	8,5	9,5
+60/+70	10	11	12

^{*} Возможно большее количество двойных ходов - запросите индивидуальную калькуляцию

- Для максимальных нагрузок
- Незначительное воздействие масел
- Преимущественно для применения внутри помещений, а также снаружи при температуре > 5 °C
- Для систем без поддержки и до 100 м в скользящем исполнении
- Погрузочно-разгрузочные модули для стеллажей, обрабатывающее и упаковочное оборудование, погрузка и разгрузка, краны для работы в помещениях

Кабели передачи данных | PVC (ПВХ) | chainflex® CF211

Класс 5.5.2.1

igus[©] chainflex[©] CF211

Рисунок в качестве примера

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KГ/KM]	[KL/KW]
CF211.02.01.02	(2x0,25)C	5,0	17	32
CF211.02.02.02 ²⁾	(2x(2x0,25))C	6,0	24	43
CF211.02.03.02	(3x(2x0,25))C	7,0	34	69
CF211.02.04.02	(4x(2x0,25))C	8,0	42	74
CF211.02.05.02	(5x(2x0,25))C	8,5	50	90
CF211.02.06.02	(6x(2x0,25))C	9,0	59	106
CF211.02.08.02	(8x(2x0,25))C	10,5	75	142
CF211.02.10.02	(10x(2x0,25))C	12,0	95	174
CF211.02.14.02	(14x(2x0,25))C	12,0	115	196
CF211.03.03.02	(3x(2x0,34))C	8,0	47	84
CF211.03.08.02	(8x(2x0,34))C	11,5	97	174
CF211.03.10.02	(10x(2x0,34))C	13,0	119	197
CF211.05.01.02	(2x0,5)C	5,5	25	43
CF211.05.02.02 ²⁾	(2x(2x0,5))C	7,0	39	64
CF211.05.03.02	(3x(2x0,5))C	9,0	58	106
CF211.05.04.02	(4x(2x0,5))C	9,5	71	132
CF211.05.05.02	(5x(2x0,5))C	10,5	87	154
CF211.05.06.02	(6x(2x0,5))C	11,5	96	179
CF211.05.08.02	(8x(2x0,5))C	13,0	133	233
CF211.05.10.02	(10x(2x0,5))C	15,5	181	295
CF211.05.14.02	(14x(2x0,5))C	15,5	200	301

Под обозначенными ²⁾ типами кабеля chainflex® следует понимать конструкцию скрутки в виде звездной четверки.

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены.

G = c жилой заземления желто-зеленого цвета x = 6ез жилы заземления

Пример заказа: CF211.02.01.02 - с Вашей желаемой длиной (с шагом 0,5 м) CF211 Cepuя chainflex[®] Код номинального сечения Число жил

Кабели передачи данных | PUR | chainflex® CF211.PUR

• Для максимальных нагрузок

- PUR внешняя оболочка
- Экранированный, витая пара
- Устойчивый к маслам и охлаждающим жидкостям
- Устойчивый к надрезам
- Без ПВХ и галогенов
- Огнестойкий
- Устойчивый к гидролизу и микробам

Одобрено к работе на офшорах!

Механические свойства

Радиус изгиба

мин. 7,5 x d э-цепь

мин. 6 x d подвижный

неподвижный мин. 4 x d

температура -25 °C до +80 °C э-цепь

-40 °C до +80 °C (в соответствии с DIN EN 60811-504) подвижный

неподвижный -50 °C до +80 °C (в соответствии с DIN EN 50305)

у макс. свободнонесущий 5 м/с скользящий 3 м/с

а макс. 50 M/c^2

Перемещение Применения в системах без поддержки и до 100 м для применения со

скольжением, Класс 5

Структура кабеля

Проводник

Специальные многопроволочные жилы из тонких медных проводников.

Изоляция жил Высококачественный состав ТРЕ, устойчивый к механическим воздей-

Скручивание жил Жилы скручены попарно с коротким шагом скрутки, парные жилы затем тоже скручены с коротким шагом скрутки.

Цветовой код в соответствии с DIN 47100.

Маркировка жил Промежуточ-Изоляция из фольги вокруг внешнего слоя.

ная оболочка Общий экран Особо устойчивый к изгибам оплетки, состоящий из луженых медных

проводников.

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Внешняя оболочка С учетом требований к энергетическим цепям применяется малоадгезивная, особо устойчивая к истиранию смесь на основе PUR (согласно DIN

EN 50363-10-2).

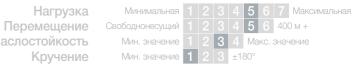
Цвет: Серый (в соответствии с RAL 7040)

Электрические характеристики

chainflex®CF211.PUR

igus

300/300 В (в соответствии с DIN BDE 0298-3) Номинальное


напряжение

1500 В (в соответствии с DIN EN 50395)

Испытательное напряжение

Маслостойкость Кручение

F211.PUR PUR $7,5 \times d$

Свойства и нормативы

Устойчивость к УФ-излучениям

Маслостойкость Маслостойкий (в соответствии с DIN EN 50363-10-2), класс 3.

Offshore MUD-устойчивый согласно NEK 606 - состояние на 2009.

Средняя.

В соответствии с IEC 60332-1-2, CEI 20-35, FT1, VW-1 Огнестойкость

Не содержит Не содержит вещества, препятствующие нанесению лаковых покрытий (согласно PV 3.10.7 - от 1992 г.). силикон Согласно DIN EN 60754. Без галогена

UL/CSA Тип 10493 и 20233, 300 V, 80 °C

NFPA NFPA Согласно NFPA 79-2012 раздел 12.9.

Согласно CEI 20-35.

DNV-GL Сертифицирован согласно нормам пожарной безопасности - Сертификат №: 13 656-14 НН

> Сертифицирован согласно нормам Технического регламента Таможенного союза № TC RU C-DE.ME77.B.01254

Сертифицирован согласно нормам пожарной безопасности № C-DE.

РВ49.В.00416 (Пожарная безопасность)

CEI _{Вону-11} Не содержит Согласно 2011/65/EU (RoHS-II).

свинец

EAC

Чистые помещения Соответствует ISO Класс 1. Материал наружной оболочки соответствует CF77.UL.05.12.D, протестирован IPA в соответствии со стандартом

14644-1..

 ϵ Согласно 2014/35/EU.

Гарантированный срок службы для данной серии (Страница 22-23)

1 войные ходы*	5 миллионов	7,5 миллионов	10 миллионов
Температура, от/до [°C]	R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
-25/-15	10	11	12
-15/+70	7,5	8,5	9,5
+70/+80	10	11	12

- Для максимальных нагрузок
- Практически абсолютная маслостойкость
- Для применения внутри помещений и на открытом воздухе при солнечном излучении средней интенсивности
- Для систем без поддержки и до 100 м в скользящем исполнении
- Металлообрабатывающие и металлорежущие станки, погрузочно-разгрузочные модули для стеллажей, индустрия упаковочных материалов, быстродействующая погрузка и разгрузка, в диапозоне заявленных отрицательных температур

Кабели передачи данных | PUR | chainflex® CF211.PUR

igus[®] chainflex[®] CF211.PUR

Рисунок в качестве примера

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KГ/KM]	[KT/KM]
CF211.PUR.02.01.02	(2x0,25)C	5,0	17	30
CF211.PUR.02.02.02 ²⁾	(2x(2x0,25))C	6,0	24	40
CF211.PUR.02.03.02	(3x(2x0,25))C	7,0	34	64
CF211.PUR.02.04.02	(4x(2x0,25))C	7,5	42	67
CF211.PUR.02.05.02	(5x(2x0,25))C	8,5	50	84
CF211.PUR.02.06.02	(6x(2x0,25))C	9,0	59	100
CF211.PUR.02.08.02	(8x(2x0,25))C	10,5	75	128
CF211.PUR.02.10.02	(10x(2x0,25))C	12,0	95	160
CF211.PUR.02.14.02	(14x(2x0,25))C	12,0	115	182
CF211.PUR.03.03.02	(3x(2x0,34))C	8,0	47	84
CF211.PUR.03.08.02	(8x(2x0,34))C	12,0	97	152
CF211.PUR.05.01.02	(2x0,5)C	5,5	25	42
CF211.PUR.05.02.02 ²⁾	(2x(2x0,5))C	7,0	39	61
CF211.PUR.05.03.02	(3x(2x0,5))C	9,0	58	101
CF211.PUR.05.04.02	(4x(2x0,5))C	9,5	71	122
CF211.PUR.05.05.02	(5x(2x0,5))C	10,5	87	154
CF211.PUR.05.06.02	(6x(2x0,5))C	11,5	96	179
CF211.PUR.05.08.02	(8x(2x0,5))C	13,0	133	220
CF211.PUR.05.10.02	(10x(2x0,5))C	15,0	181	277
CF211.PUR.05.14.02	(14x(2x0,5))C	15,0	200	301

Под обозначенными ²⁾ типами кабеля chainflex® следует понимать конструкцию скрутки в виде звездной четверки.

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены.

G = c жилой заземления желто-зеленого цвета; x = 6ез жилы заземления

Пример заказа: CF211.PUR.02.01.02 - с Вашей желаемой длиной (с шагом 0,5 м) CF211.PUR Серия chainflex® Код номинального сечения Число жил

- Для максимальных нагрузок
- Внешняя изоляция ТРЕ
- Экранированный
- Витая пара
- Стойкий к маслам, био-маслам
- Без ПВХ и галогенов
- Устойчивый к гидролизу и микробам

Механические свойства

Радиус изгиба

мин. 6,8 x d э-цепь

мин. 5 x d подвижный

неподвижный мин. 4 x d

Температура -35 °C до +100 °C э-цепь

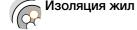
подвижный -50 °C до +100 °C (в соответствии с DIN EN 60811-504)

неподвижный -55 °C до +100 °C (в соответствии с DIN EN 50305)

v макс.

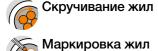
свободнонесущий 10 м/с скользящий 6 м/с

 100 M/c^2 а макс.

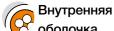

Перемещение Применения в системах без поддержки и до 400 м для применения со

скольжением, Класс 6

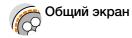
Структура кабеля


Проводник Гибкий провод с особо устойчивым к изгибу исполнением из тонких мед-

ных проводников (согласно DIN EN 60228).


Высококачественный состав ТРЕ, устойчивый к механическим воздей-

Жилы скручены попарно с коротким шагом скрутки, парные жилы затем


тоже скручены с коротким шагом скрутки. Жилы < 1,0 мм²: Цветовой код в соответствии с DIN 47100.

Жилы ≥ 1,0 мм²: Жилы чёрные с белыми цифрами.

С учетом требований к энергоцепям применяется смесь на основе ТРЕ.

оболочка

Особо устойчивый к изгибам оплетки, состоящий из луженых медных

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

устойчивая к истиранию и сгибанию, смесь на основе ТРЕ.

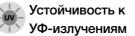
Внешняя оболочка С учетом требований к э-цепям применяется малоадгезивная, особо

Цвет: Стальной синий (в соответствии с RAL 5011)

Электрические характеристики

Номинальное напряжение

300/300 В (в соответствии с DIN BDE 0298-3)


Испытательное

1500 В (в соответствии с DIN EN 50395)

напряжение

Класс 6.6.4.1

Свойства и нормативы

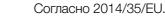
Высокая.

Маслостойкость Не содержит

Стойкий к маслам (согласно DIN EN 60811-404), стойкий к био-маслам (протестирован согласно VDMA 24568 с Plantocut 8 S-MB от DEA), класс 4. Не содержит вещества, препятствующие нанесению лаковых покрытий (согласно PV 3.10.7 - от 1992 г.).

Согласно DIN EN 60754. Без галогена

Сертифицирован согласно нормам Технического регламента Таможенного союза № TC RU C-DE.ME77.B.01254



_{вон} Не содержит Согласно 2011/65/EU (RoHS-II).

CE_{CE}

Чистые помещения Соответствует ISO Класса 1. Материал наружной оболочки соответствует CF9.15.07, протестирован IPA в соответствии со стандартом 14644-1.

Гарантированный срок службы для данной серии (Страница 22-23)

5 миллионов	7,5 миллионов	10 миллионов
R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
7,5	8,5	9,5
6,8	7,8	8,8
7,5	8,5	9,5
	R мин. [фактор x d] 7,5 6,8	R мин. R мин. [фактор x d] [фактор x d] 7,5 8,5 6,8 7,8

- Для максимальных нагрузок
- Практически неограниченная стойкость к маслам, а также к био-маслам
- Для внутреннего и наружного применения, устойчивые к УФ-излучению
- Для систем без поддержки до 400 м и более в системе со скольжением
- Погрузочно-разгрузочные модули для стеллажей, металлообрабатывающие и металлорежущие станки, быстродействующая погрузка и разгрузка, чистые помещения, производство полупроводников, краны для работы вне помещений, применение при низких температурах

igus@ chainflex@CF11

Рисунок в качестве примера

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KГ/KM]	[KГ/KM]
CF11.01.04.02	(4x(2x0,14))C	7,5	31	65
CF11.01.18.02	(18x(2x0,14))C	12,0	107	198
CF11.02.01.02	(2x0,25)C	6,0	18	39
CF11.02.02.02 ²⁾	(2x(2x0,25))C	6,5	28	51
CF11.02.03.02	(3x(2x0,25))C	8,0	37	80
CF11.02.04.02	(4x(2x0,25))C	8,5	44	91
CF11.02.05.02	(5x(2x0,25))C	9,0	52	107
CF11.02.06.02	(6x(2x0,25))C	10,0	73	134
CF11.02.09.02	(9x(2x0,25))C	12,5	102	208
CF11.02.10.02	(10x(2x0,25))C	13,0	109	223
CF11.02.14.02	(14x(2x0,25))C	13,5	132	232
CF11.03.08.02	(8x(2x0,34))C	13,0	113	227
CF11.05.04.02	(4x(2x0,5))C	9,5	82	138
CF11.05.06.02	(6x(2x0,5))C	12,0	110	205
CF11.05.08.02	(8x(2x0,5))C	14,0	145	271
CF11.07.03.02	(3x(2x0,75))C	10,0	87	159
CF11.10.04.02	(4x(2x1,0))C	12,0	134	237
CF11.15.06.02	(6x(2x1,5))C	17,0	263	427
CF11.25.03.02	(3x(2x2,5))C	15,5	226	393

Под обозначенными $^{2)}$ типами кабеля chainflex $^{\otimes}$ следует понимать конструкцию скрутки в виде звездной четверки.

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены.

G = с жилой заземления желто-зеленого цвета; x = без жилы заземления

Пример заказа: CF11.01.04.02 – с Вашей желаемой длиной (с шагом 0,5 м) CF11 Серия chainflex® Код номинального сечения Число жил

Одобрено к

работе на

офшорах!

- Для максимальных нагрузок
- PUR внешняя оболочка
- Двойное экранирование, витая пара
- Устойчивый к маслам и охлаждающим жидкостям
- Устойчивый к надрезам
- Без ПВХ и галогенов
- Огнестойкий
- Устойчивый к гидролизу и микробам

Механические свойства

Радиус изгиба

э-цепь мин. 10 x d подвижный

мин. 8 x d **неподвижный** мин. 5 x d

Температура

э-цепь -25 °C до +80 °C

-40 °C до +80 °C (в соответствии с DIN EN 60811-504) подвижный неподвижный -50 °C до +80 °C (в соответствии с DIN EN 50305)

v макс.

свободнонесущий 10 м/с 5 m/c скользящий

 80 m/c^2

а макс.

Перемещение

Применения в системах без поддержки и до 100 м для применения со

скольжением, Класс 5

Структура кабеля

Проводник

Специальные многопроволочные жилы из тонких медных проводников.

Цветовой код в соответствии с DIN 47100.

Изоляция жил

Высококачественный состав ТРЕ, устойчивый к механическим воздействиям.

Скручивание жил

Жилы скручены попарно с коротким шагом скрутки, парные жилы затем тоже скручены с коротким шагом скрутки.

Маркировка жил

Экран группы жил Особо устойчивый к изгибам оплетки, состоящий из луженых медных проводников. Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Внутренняя оболочка

С учетом требований к энергоцепям применяется смесь на основе полиуретана (PUR).

Общий экран

Особо устойчивый к изгибам оплетки, состоящий из луженых медных

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое Внешняя оболочка С учетом требований к энергетическим цепям применяется малоадгезивная, особо устойчивая к истиранию смесь на основе PUR (согласно DIN

EN 50363-10-2).

Цвет: Антрацитово-серый (в соответствии с RAL 7016)

Электрические характеристики

CF112

Номинальное напряжение

300/300 В (в соответствии с DIN BDE 0298-3)

Испытательное

1500 В (в соответствии с DIN EN 50395)

напряжение

Класс 6.5.3.1

Маслостойкость Кручение

CF112 PUR 10 x d

Свойства и нормативы

Устойчивость к УФ-излучениям

Высокая.

Маслостойкость

Маслостойкий (в соответствии с DIN EN 50363-10-2), класс 3.

MUD-устойчивый согласно NEK 606 - состояние на 2009.

Offshore

В соответствии с IEC 60332-1-2, CEI 20-35, FT1, VW-1 Огнестойкость

Не содержит силикон Без галогена Не содержит вещества, препятствующие нанесению лаковых покрытий

(согласно PV 3.10.7 - от 1992 г.). Согласно DIN EN 60754.

UL/CSA Тип 10493 и 20233, 300 V, 80 °C

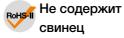
Согласно NFPA 79-2012 раздел 12.9.

EAC

Сертифицирован согласно нормам пожарной безопасности - Сертифи-

кат №: 13 656-14 НН Сертифицирован согласно нормам Технического регламента Таможен-

ного союза № TC RU C-DE.ME77.B.01254 Сертифицирован согласно нормам пожарной безопасности № C-DE.


CF77.UL.05.12.D, протестирован IPA в соответствии со стандартом

РВ49.В.00416 (Пожарная безопасность)

Согласно 2011/65/EU (RoHS-II).

Согласно CEI 20-35.

свинец

Чистые помещения Соответствует ISO Класс 1. Материал наружной оболочки соответствует

14644-1.

Согласно 2014/35/EU.

Двойные ходы*	5 миллионов	7,5 миллионов	10 миллионов
Температура, от/до [°C]	R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
-25/-15	12,5	13,5	14,5
-15/+70	10	11	12
+70/+80	12,5	13,5	14,5

- Для самых экстремальных условий эксплуатации
- Практически абсолютная маслостойкость
- Для применения внутри помещений и на открытом воздухе при солнечном излучении средней интенсивности
- Для систем без поддержки и до 100 м в скользящем исполнении
- Металлообрабатывающие и металлорежущие станки, погрузочно-разгрузочные модули для стеллажей, индустрия упаковочных материалов, быстродействующая погрузка и разгрузка, в диапозоне заявленных отрицательных температур

igus[©] chainflex[©] CF112

Рисунок в качестве примера

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KT/KM]	[KL/KW]
CF112.02.02.02	(2x(2x0,25)C)C	9,5	59	131
CF112.02.03.02	(3x(2x0,25)C)C	10,0	75	151
CF112.02.04.02	(4x(2x0,25)C)C	11,0	86	167
CF112.02.05.02	(5x(2x0,25)C)C	11,5	105	194
CF112.02.06.02	(6x(2x0,25)C)C	12,5	118	221
CF112.05.02.02	(2x(2x0,5)C)C	11,5	80	176
CF112.05.03.02	(3x(2x0,5)C)C	12,0	105	202
CF112.05.04.02	(4x(2x0,5)C)C	13,0	124	233
CF112.05.06.02	(6x(2x0,5)C)C	14,5	171	322

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены.

G = c жилой заземления желто-зеленого цвета x = 6ез жилы заземления

Пример заказа: CF112.02.02.02 - с Вашей желаемой длиной (с шагом 0,5 м) CF112 Серия chainflex[®] Код номинального сечения Число жил

- Для максимальных нагрузок
- Внешняя изоляция ТРЕ
- Двойное экранирование
- Маслостойкий
- Био-маслостойкий
- Без ПВХ и галогенов
- Устойчивый к гидролизу и микробам

Механические свойства

Радиус изгиба	э-цепь	мин. 10 x d
(CR	подвижный	мин. 8 x d

неподвижный мин. 5 x d -35 °C до +100 °C Температура э-цепь

-50 °C до +100 °C (в соответствии с DIN EN 60811-504)

неподвижный -55 °C до +100 °C (в соответствии с DIN EN 50305)

свободнонесущий 10 м/с v макс. скользящий 6 м/с

а макс. 100 M/c^2

> Применения в системах без поддержки и до 400 м для применения со Перемещение

скольжением, Класс 6

Структура кабеля

Проводник Гибкий провод с особо устойчивым к изгибу исполнением из тонких мед-

ных проводников (согласно DIN EN 60228).

Высококачественный состав ТРЕ, устойчивый к механическим воздей-Изоляция жил

Жилы скручены попарно с коротким шагом скрутки, парные жилы затем Скручивание жил тоже скручены с коротким шагом скрутки.

Жилы < 0,5 мм²: Цветовой код в соответствии с DIN 47100.

Маркировка жил Жилы ≥ 0,5 мм²: Жилы чёрные с белыми цифрами.

Экран группы жил Особо устойчивый к изгибам оплетки, состоящий из луженых медных проводников.

С учетом требований к энергоцепям применяется смесь на основе ТРЕ.

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Оболочка С учётом требований к энергоцепям к экранированию пар применяется

группы жил смесь на основе ТРЕ.

оболочка

Общий экран Особо устойчивый к изгибам оплетки, состоящий из луженых медных

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое

Внешняя оболочка С учетом требований к э-цепям применяется малоадгезивная, особо

устойчивая к истиранию и сгибанию, смесь на основе ТРЕ. Цвет: Стальной синий (в соответствии с RAL 5011)

Электрические характеристики

напряжение

CF12

igus^o chainflex^o

Внутренняя

300/300 В (в соответствии с DIN BDE 0298-3) Номинальное напряжение

1500 В (в соответствии с DIN EN 50395) Испытательное

Класс 6.6.4.1

Свойства и нормативы

Устойчивость к УФ-излучениям

Маслостойкость

Не содержит

Без галогена

силикон

CECE

Высокая.

Стойкий к маслам (согласно DIN EN 60811-404), стойкий к био-маслам (протестирован согласно VDMA 24568 с Plantocut 8 S-MB от DEA), класс 4. Не содержит вещества, препятствующие нанесению лаковых покрытий (согласно PV 3.10.7 - от 1992 г.).

Согласно DIN EN 60754.

'EAC Сертифицирован согласно нормам Технического регламента Таможенного союза № TC RU C-DE.ME77.B.01254

_{вонут} Не содержит Согласно 2011/65/EU (RoHS-II).

свинец

Чистые помещения Соответствует ISO Класса 1. Материал наружной оболочки соответствует CF9.15.07, протестирован IPA в соответствии со стандартом 14644-1.

Согласно 2014/35/EU.

Гарантированный срок службы для данной серии (Страница 22-23)

Двойные ходы*	5 миллионов	7,5 миллионов	10 миллионов
Температура, от/до [°C]	R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
-35/-25	12,5	13,5	14,5
-25/+90	10	11	12
+90/+100	12,5	13,5	14,5
* Dog vove o 60 50 0000 000 000 000			

Стандартные области применения

- Для самых экстремальных условий эксплуатации
- Практически неограниченная стойкость к маслам, а также к био-маслам
- Для внутреннего и наружного применения, устойчивые к УФ-излучению
- Для систем без поддержки до 400 м и более в системе со скольжением
- Погрузочно-разгрузочные модули для стеллажей, металлообрабатывающие и металлорежущие станки, быстродействующая погрузка и разгрузка, чистые помещения, производство полупроводников, краны для работы вне помещений, применение при низких температурах
- Для максимальной защиты от EMC

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KL/KW]	[KГ/KM]
CF12.02.02.02	(2x(2x0,25)C)C	11,0	28	153
CF12.02.04.02	(4x(2x0,25)C)C	11,0	54	177
CF12.02.05.02	(5x(2x0,25)C)C	13,0	70	228
CF12.05.03.02	(3x(2x0,5)C)C	13,5	69	232
CF12.05.04.02	(4x(2x0,5)C)C	14,5	87	270
CF12.05.05.02	(5x(2x0,5)C)C	15,5	109	341
CF12.05.06.02	(6x(2x0,5)C)C	17,0	137	397
CF12.05.08.02	(8x(2x0,5)C)C	20,5	174	527
CF12.05.10.02	(10x(2x0,5)C)C	23,0	217	614
CF12.05.14.02	(14x(2x0,5)C)C	23,0	317	725
CF12.10.06.02	(6x(2x1,0)C)C	20,0	212	551

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены G = с жилой заземления желто-зеленого цвета x = без жилы заземления

- При тяжелом режиме применения и особо маленьком радиусе до 4 x d
- Внешняя изоляция ТРЕ
- Стойкий к маслам, био-маслам
- Без ПВХ и галогенов
- Гибкий при низких температурах
- Устойчивый к гидролизу и микробам

Механические свойства

Радиус изгиба мин. 4 x d э-цепь

мин. 4 x d подвижный **неподвижный** мин. 3 x d

температура -35 °C до +90 °C э-цепь

подвижный -50 °С до +90 °С (в соответствии с DIN EN 60811-504)

неподвижный -55 °C до +90 °C (в соответствии с DIN EN 50305)

у v макс. свободнонесущий 10 м/с скользящий 6 м/с

а макс. 100 M/c^2

Короткие, высокоскоростные перемещения при малых радиусах и огра-

ниченном пространстве, Класс 5 $\pm\,90^{\circ}$, на 1 м длины кабеля, Класс 2

Структура кабеля

Перемещение

Кручение

Проводник

Проводник из высокоустойчивых к изгибу проводников с покрытием из

специального материала.

Изоляция жил

Высококачественный состав ТРЕ, устойчивый к механическим воздей-

Скручивание жил

Жилы скручены с коротким шагом скрутки.

Маркировка жил Цветовой код в соответствии с DIN 47100.

Внешняя оболочка С учетом требований к э-цепям применяется малоадгезивная, особо

устойчивая к истиранию и сгибанию, смесь на основе ТРЕ.

Цвет: Стальной синий (в соответствии с RAL 5011)

Электрические характеристики

chainflex® CF298

Номинальное 300/300 B

напряжение Испытательное

1500 B

напряжение

Class 7.5.4.2

Маслостойкость Кручение

CF298 TPE 4 x d

Свойства и нормативы

Устойчивость к УФ-излучениям

Не содержит

силикон

Высокая.

Маслостойкость

CE_{CE}

Стойкий к маслам (согласно DIN EN 60811-404), стойкий к био-маслам (протестирован согласно VDMA 24568 с Plantocut 8 S-MB от DEA), класс 4. Не содержит вещества, препятствующие нанесению лаковых покрытий

(согласно PV 3.10.7 - от 1992 г.).

Согласно DIN EN 60754. Без галогена

_{вону-п} Не содержит свинец

Согласно 2011/65/EU (RoHS-II).

Чистые помещения Соответствует ISO Класса 1. Материал наружной оболочки соответствует CF9.15.07, протестирован IPA в соответствии со стандартом 14644-1.

Согласно 2014/35/EU.

Двой	ные ходы*	10 миллионов	15 миллионов	20 миллионов
	Температура, от/до [°C]	R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
	-35/-25	5	6	7
	-25/+80	4	5	6
	+80/+90	5	6	7
÷ D	_			

^{*} Возможно большее количество двойных ходов - запросите индивидуальную калькуляцию.

Стандартные области применения

- При тяжелом режиме применения и особо маленьком радиусе до 4 x d
- Практически неограниченная стойкость к маслам, а также к био-маслам
- Для внутреннего и наружного применения, устойчивые к УФ-излучению
- Особенно для применения при коротких перемещениях с большой скоростью и с малыми радиусами, а так же в ограниченном пространстве
- Подъемно-транспортные роботы, автоматические двери, чистые помещения, высокоскоростная погрузка и разгрузка

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KL/KW]	[KL/KW]
CF298.01.02	2x0,14	4,5	5	15
CF298.01.04	4x0,14	5,5	9	26
CF298.01.08	8x0,14	7,0	17	45
CF298.02.03	3x0,25	5,5	13	29
CF298.02.04	4x0,25	6,0	17	36
CF298.02.07	7x0,25	7,0	29	54
CF298.02.08	8x0,25	7,5	33	63
CF298.03.04	4x0,34	6,0	20	38
CF298.03.07	7x0,34	7,5	35	64
CF298.05.04	4x0,5	6,5	28	49

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены G = с жилой заземления желто-зеленого цвета x = без жилы заземления

Перемещение Свободнонесущий 1 2 3 4 Мин. значение Маслостойкость Кручение

Минимальная 1 2 3 4 5 6 7 Максимальная

CF299 TPE 4 x d

Кабели передачи данных | TPE | chainflex® CF299

- При тяжелом режиме применения и особо маленьком радиусе до 4 x d
- Внешняя изоляция ТРЕ
- Экранированный
- Стойкий к маслам, био-маслам
- Без ПВХ и галогенов
- Гибкий при низких температурах
- Устойчивый к гидролизу и микробам

Механические свойства

	Радиус изгиба	э-цепь	мин. 4 x d
(CR		подвижный	мин. 4 x d
		неподвижный	мин. 3 x d

Температура -35 °C до +90 °C э-цепь

-50 °C до +90 °C (в соответствии с DIN EN 60811-504) подвижный неподвижный -55 °C до +90 °C (в соответствии с DIN EN 50305)

v макс. свободнонесущий 10 м/с 6 м/с скользящий

а макс. Перемещение Короткие, высокоскоростные перемещения при малых радиусах и огра-

 100 M/c^2

ниченном пространстве, Класс 5

Структура кабеля

Изоляция жил

Маркировка жил

Проводник Проводник из высокоустойчивых к изгибу проводников с покрытием из специального материала.

> Высококачественный состав ТРЕ, устойчивый к механическим воздействиям.

Скручивание жил Жилы скручены с коротким шагом скрутки.

Цветовой код в соответствии с DIN 47100. Внутренняя С учетом требований к энергоцепям применяется смесь на основе ТРЕ.

оболочка Общий экран Высокопрочный на изгиб, легированный специальный экран.

Покрытие прибл. 70 % линейное, прибл. 90 % оптическое Внешняя оболочка С учетом требований к э-цепям применяется малоадгезивная, особо

> устойчивая к истиранию и сгибанию, смесь на основе ТРЕ. Цвет: Стальной синий (в соответствии с RAL 5011)

Электрические характеристики

300/300 B Номинальное напряжение

1500 B Испытательное

напряжение

chainflex® CF299

Новинка!

Class 7.5.4.1 Свойства и нормативы

Устойчивость к УФ-излучениям

Высокая.

Маслостойкость

Не содержит

Стойкий к маслам (согласно DIN EN 60811-404), стойкий к био-маслам (протестирован согласно VDMA 24568 с Plantocut 8 S-MB от DEA), класс 4. Не содержит вещества, препятствующие нанесению лаковых покрытий

силикон (согласно PV 3.10.7 - от 1992 г.).

Согласно DIN EN 60754. Без галогена

_{вону-п} Не содержит свинец

(Ece

Согласно 2011/65/EU (RoHS-II).

Чистые помещения Соответствует ISO Класса 1. Материал наружной оболочки соответствует CF9.15.07, протестирован IPA в соответствии со стандартом 14644-1.

Согласно 2014/35/EU.

Гарантированный срок службы для данной серии (Страница 22-23)

10 миллионов	15 миллионов	20 миллионов
R мин. [фактор x d]	R мин. [фактор x d]	R мин. [фактор x d]
5	6	7
4	5	6
5	6	7
	R мин. [фактор x d] 5 4	R мин. R мин. [фактор x d] [фактор x d] 5 6 4 5

Стандартные области применения

- При тяжелом режиме применения и особо маленьком радиусе до 4 x d
- Практически неограниченная стойкость к маслам, а также к био-маслам
- Для внутреннего и наружного применения, устойчивые к УФ-излучению
- Особенно для применения при коротких перемещениях с большой скоростью и с малыми радиусами, а так же в ограниченном пространстве
- Подъемно-транспортные роботы, автоматические двери, чистые помещения, высокоскоростная погрузка и разгрузка

Артикул	Число жил и номиналь- ное сечение проводника	Внешний диаметр (d) макс.	Индекс меди	Bec
	[MM ²]	[MM]	[KГ/KM]	[KT/KM]
CF299.01.02	(2x0,14)C	6,0	18	37
CF299.01.04	(4x0,14)C	6,5	23	46
CF299.01.08	(8x0,14)C	8,5	36	77
CF299.02.04	(4x0,25)C	7,0	33	59
CF299.02.07	(7x0,25)C	8,5	49	85
CF299.03.08	(8x0,34)C	9,5	64	111

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены. G = с жилой заземления желто-зеленого цвета x = без жилы заземления

Высокая.

Кручение

(согласно PV 3.10.7 – от 1992 г.)

Согласно 2011/65/EU (RoHS-II)

TPE Коаксиальный кабель | CFKoax

- Для максимальных нагрузок
- Внешняя изоляция ТРЕ
- Маслостойкий
- Био-маслостойкий
- Устойчив к УФ-излучению
- Устойчивый к гидролизу и микробам

Механические свойства

Радиус изгиба	э-цепь	мин. 10 x d
(CR	подвижный	мин. 8 x d
	неподвижный	мин. 5 x d

-35 °C до +100 °C (CFKoax1/3) э-цепь

-35 °C до +70 °C (CFKoax2)

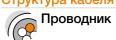
-50 °C до +100 °C (CFKoax1/3) подвижный

-50 °C до +70 °C (CFKoax2)

неподвижный -55 °C до +100 °C (CFKoax1/3)

-55 °C до +70 °C (CFKoax2)

свободнонесущий 10 м/с скользящий 5 м/c


а макс. 100 M/c^2

Применения в системах без поддержки и до 400 м

для применения со скольжением, Класс 6

Структура кабеля

Многопроволочный: адаптированная с оптимальными диаметрами

проводников и шагом скрутки специально для э-цепей.

Изоляция жил Специальная изолирующая смесь из FEP.

Скручивание жил Жилы скручены с коротким шагом скрутки.

Маркировка жил Коаксиальный элемент ▶ Таблица-программа поставок

Экран группы жил Особо устойчивая к изгибам оплетки из луженых медных проводников.

Покрытие прибл. 70 % линейное, прибл. 90 %

С учетом требований к энергоцепям применяется смесь на основе ТРЕ.

группы жил Внешняя оболочка С учетом требований к э-цепям применяется малоадгезивная особо

устойчивая к истиранию и сгибанию, смесь на основе ТРЕ.

Электрические характеристики

CFKOAX1.01

Номинальное напряжение

500 В (в соответствии DIN VDE 0298-3)

Цвет: ▶ Таблица-программа поставок

Испытательное

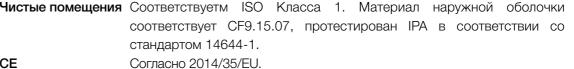
1500 В (в соответствии DIN EN 50395)


напряжение

Класс 6.6.4.1

Свойства и нормативы

Устойчивость к УФ-излучениям



Не содержит силикон

_{вону-п} Не содержит свинец

Стойкий к маслам (согласно DIN EN 60811-404), стойкий к био-маслам

Не содержит вещества, препятствующие нанесению лаковых покрытий

Сертифицирован согласно нормам Технического регламента

(протестирован согласно VDMA 24568 с Plantocut 8 S-MB от DEA).

Таможенного союза № TC RU C-DE.ME77.B.01254

Используемые элементы в кабелях серии СF Коах1 сравнимы с HF75-0,3/1,6 соответствуют MIL-C-17/94-RG179 и подходят для штекера RG179!

Используемые элементы в кабелях серии CF Коах2 сравнимы с HF50-0,9/2,95 соответствуют MIL-C-17/28-RG58 и подходят для штекера RG58! Используемые элементы в кабелях серии CF Коах3 сравнимы с HF50-0,3/0,85 соответствуют MIL-C-17/93-RG178 и подходят для штекера RG178!

Гарантированный срок службы для данной серии (Страница 22-23)

Двойные ходы*	5 миллионов	7,5 миллионов	10 миллионов			
Температура, от/до [°С]	R min. [фактор x d]	R min. [фактор x d]	R min. [фактор x d]			
-35/-25	12,5	13,5	14,5			
-25/+90 (CFKoax1/3)	10	11	12			
-25/+60 (CFKoax2)	10	11	12			
+90/+100 (CFKoax1/3)	12,5	13,5	14,5			
+60/+70 (CFKoax2)	12,5	13,5	14,5			
* Возможно большее количество двойных ходов - запросите индивидуальную калькуляцию.						

- Для самых экстремальных условий эксплуатации
- Практически неограниченная стойкость к маслам, а также к био-маслам
- Для внутреннего и наружного применения, устойчивые к УФ-излучению
- Для систем без поддержки до 400 м и более в системе со скольжением
- Погрузочно-разгрузочные модули для стеллажей, металлообрабатывающие и металлорежущие станки, быстродействующая погрузка и разгрузка, чистые помещения, производство полупроводников, краны для работы в помещениях, применение при низких температурах

TPE Коаксиальный кабель | CFKoax

Класс 6.6.4.1

Маслостойкость Кручение

CFKoax TPE 10 x d

IGUS® CHAINFLEX® CFKOAX1.01

Рисунок в качестве примера

Артикул	Число жил и номиналь- ное сечение проводника [мм²]	Внешний диаметр (d) макс. [мм]	Индекс меди [кг/км]	Вес
CFKoax1.01	1	4,5	7	23
CFKoax1.05	5	10,0	35	112
CFKoax2.01	1	5,5	20	37
CFKoax3.01	1	3,0	5	12

Артикул	Волновое сопротивление прибл [Ом]	Проводник/ наружный диаметр [мм]	Цветовой код	Цвет внешней оболочки (аналогичный RAL)
CFKoax1.01	75	0,3/1,6	красный	Стально-синий (в соответствии с RAL 5011)
CFKoax1.05	75	0,3/1,6	красный, зеленый, голу- бой, белый, черный	Стально-синий (в соответствии с RAL 5011)
CFKoax2.01	50	0,9/2,95	-	Чёрный янтарь (в соответствии с RAL 9005)
CFKoax3.01	50	0,3/0,85	-	Серый (в соответствии с RAL 7040)

Примечание: указанные внешние диаметры являются максимальными значениями и могут быть уменьшены. G = с жилой заземления желто-зеленого цвета; x = без жилы заземления

Пример заказа: СFКоах.1.01 – с Вашей желаемой длиной (с шагом 0,5 м) CFKoax1 Серия chainflex® .01 Количество коаксиальных элементов

Коаксиальный кабель и другие кабели chainflex® для платформ. э-цепи®: системы E4/4

